9 resultados para Aquatic plants

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. The potential for seed dispersal by fish (ichthyochory) will vary among aquatic plants because of differences in seed size and morphology.

2. To examine how seed morphology influences the probability of dispersal by the common carp (Cyprinus carpio), we studied seed ingestion, retention time and subsequent egestion and germination of seeds of Sparganium emersum and Sagittaria sagittifolia, two aquatic plant species with similar sized but morphologically different seeds.

3. We compared dispersal probabilities between the two plant species, in which the probability of dispersal is assumed to be a function of the probabilities of seed ingestion, egestion and germination, and the dispersal distance is assumed to be a function of seed egestion rate over time.

4. We found that, although the soft seeds of S. sagittifolia had an approximately 1.5 times higher probability of being ingested by the carp than the hard seeds of S. emersum (83.15% ± 1.8% versus 56.16% ± 2.7%, respectively), the latter had an almost twofold higher probability of surviving the passage through the digestive tract (38.58% ± 2.7% versus 20.97% ± 1.5%, respectively). Patterns of seed egestion over time did not differ between the two plant species, despite the difference in seed morphology. Gut passage had a different effect on seed germination between plant species. Compared with non-ingested controls, seeds of S. emersum showed a 12.6% increase in germination and a 2.1 day acceleration in germination rate, whereas seeds of S. sagittifolia displayed a 47.3% decrease and 5.1 day delay, respectively.

5. Our results suggest that seed morphology affects the dispersal probability and postdispersal establishment, but not the dispersal distance, of aquatic plants that are dispersed by fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Firefighting foams (Class A foams) are an effective and widespread firefighting tool, and are frequently used in environmentally sensitive areas. They are known to be ecologically damaging in aquatic environments; however, their impacts at the plant species or ecosystem level are relatively unknown. Reports of shoot damage to plants, suppressed flowering and changes in plant community composition suggest that the environmental damage caused by their use may be unacceptable. Applications of four levels of foam to seedlings of seven Australian plant species, from five representative and widespread families, showed no detectable impacts on a range of vegetative growth characteristics. The results are encouraging for continued use of firefighting foam in sensitive natural habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Firefighting foams (Class A foams) are an effective and widespread firefighting tool which are frequently used in environmentally sensitive areas. Firefighting foams are known to be ecologically damaging in aquatic environments, however their impacts at the plant species or ecosystem level are relatively unknown. Reports of shoot damage to plants, suppressed flowering, and changes in plant community composition suggested that the ecological damage caused by their use may be unacceptable. However, applications of foam to seedlings of some Australian plant species from representative and widespread families, showed no detectable impacts on a range of vegetative growth characteristics. Application of 1.0% foam to heathland soils showed no detectable impacts on soil invertebrate Orders sampled over several months. The results are encouraging for the continued use of Class A foam as a fire suppression technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both Engaeus sericatus and Cherax destructor are omnivorous crayfishes consuming a variety of food items. Materials identified in the faeces of both E. sericatus and C. destructor consisted of mainly plant material with minor amounts of arthropod animals, algae and fungi. The morphology of the gastric mill of C. destructor suggests that it is mainly involved in crushing of food material while the gastric mill of E. sericatus appears to be better suited to cutting of food material. Given this, the gastric mill of E. sericatus may be better able to cut the cellulose and hemicellulose fibres associated with fibrous plant material. In contrast, the gastric mill of C. destructor appears to be more efficient in grinding soft materials such as animal protein and algae. Both species accumulated high amounts of lipids in their midgut glands (about 60% of the dry mass) which were dominated by triacylglycerols (81–82% of total lipids). The dominating fatty acids were 16:0, 16:1(n-7), 18:1(n-9), 18:2(n-6), and 18:3(n-3). The two latter fatty acids can only be synthesised by plants, and are thus indicative of the consumption of terrestrial plants by the crayfishes. The similarity analysis of the fatty acid patterns showed three distinct clusters of plants and each of the crayfish species. The complement of digestive enzymes, proteinases, total cellulase, endo-β-1,4-glucanase, β-glucosidase, laminarinase and xylanase within midgut gland suggests that both C. destructor and E. sericatus are capable of hydrolysing a variety of substrates associated with an omnivorous diet. Higher activities of total cellulase, endo-β-1,4-glucanase and β-glucosidase indicate that E. sericatus is better able to hydrolyse cellulose within plant material than C. destructor. In contrast to E. sericatus, higher total protease and N-acetyl-β-d-glucosaminidase activity in the midgut gland of C. destructor suggests that this species is better able to digest animal materials in the form of arthropods. Differences in total cellulase and gastric mill morphology suggest that E. sericatus is more efficient at digesting plant material than C. destructor. However, the contents of faecal pellets and the fatty acid compositions seem to indicate that both species opportunistically feed on the most abundant and easily accessible food items.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At least two distinct trade-offs are thought to facilitate higher diversity in productive plant communities under herbivory. Higher investment in defence and enhanced colonization potential may both correlate with decreased competitive ability in plants. Herbivory may thus promote coexistence of plant species exhibiting divergent life history strategies. How different seasonally tied herbivore assemblages simultaneously affect plant community composition and diversity is, however, largely unknown. Two contrasting types of herbivory can be distinguished in the aquatic vegetation of the shallow lake Lauwersmeer. In summer, predominantly above-ground tissues are eaten, whereas in winter, waterfowl forage on below-ground plant propagules. In a 4-year exclosure study we experimentally separated above-ground herbivory by waterfowl and large fish in summer from below-ground herbivory by Bewick’s swans in winter. We measured the individual and combined effects of both herbivory periods on the composition of the three-species aquatic plant community. Herbivory effect sizes varied considerably from year to year. In 2 years herbivore exclusion in summer reinforced dominance of Potamogeton pectinatus with a concomitant decrease in Potamogeton pusillus, whereas no strong, unequivocal effect was observed in the other 2 years. Winter exclusion, on the other hand, had a negative effect on Zannichellia palustris, but the effect size differed considerably between years. We suggest that the colonization ability of Z. palustris may have enabled this species to be more abundant after reduction of P. pectinatus tuber densities by swans. Evenness decreased due to herbivore exclusion in summer. We conclude that seasonally tied above- and below-ground herbivory may each stimulate different components of a macrophyte community as they each favoured a different subordinate plant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degree to which vertebrate herbivores exploitatively compete for the same food plant may depend on the level of compensatory plant growth. Such compensation is higher when there is reduced density-dependent competition in plants after herbivore damage. Whether there is relief from competition may largely be determined by the life-history stage of plants under herbivory. Such stage-specific compensation may apply to seasonal herbivory on the clonal aquatic plant sago pondweed (Potamogeton pectinatus L.). It winters in sediments of shallow lakes as tubers that are foraged upon by Bewick's Swans (Cygnus columbianus bewickii Yarrell), whereas aboveground biomass in summer is mostly consumed by ducks, coots, and Mute Swans. Here, tuber predation may be compensated due to diminished negative density dependence in the next growth season. However, we expected lower compensation to summer herbivory by waterfowl and fish as density of aboveground biomass in summer is closely related to photosynthetic carbon fixation. In a factorial exclosure study we simultaneously investigated (1) the effect of summer herbivory on aboveground biomass and autumn tuber biomass and (2) the effect of tuber predation in autumn on aboveground biomass and tuber biomass a year later. Summer herbivory strongly influenced belowground tuber biomass in autumn, limiting food availability to Bewick's Swans. In contrast, tuber predation in autumn by Bewick's Swans had a limited and variable effect on P. pectinatus biomass in the following growth season. Whereas relief from negative density dependence largely eliminates effects of belowground herbivory by swans, aboveground herbivory in summer limits both above- and belowground plant biomass. Hence, there was an asymmetry in exploitative competition, with herbivores in summer reducing food availability for belowground herbivores in autumn, but not the other way around.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared to terrestrial environments, grazing intensity on belowground plant parts may be particularly strong in aquatic environments, which may have great effects on plant-community structure. We observed that the submerged macrophyte, Potamogeton pectinatus, which mainly reproduces with tubers, often grows at intermediate water depth and that P. perfoliatus, which mainly reproduces with rhizomes and turions, grows in either shallow or deep water. One mechanism behind this distributional pattern may be that swans prefer to feed on P. pectinatus tubers at intermediate water depths. We hypothesised that when swans feed on tubers in the sediment, P. perfoliatus rhizomes and turions may be damaged by the uprooting, whereas the small round tubers of P. pectinatus that escaped herbivory may be more tolerant to this bioturbation. In spring 2000, we transplanted P. perfoliatus rhizomes into a P. pectinatus stand and followed growth in plots protected and unprotected, respectively, from bird foraging. Although swan foraging reduced tuber biomass in unprotected plots, leading to lower P. pectinatus density in spring 2001, this species grew well both in protected and unprotected plots later that summer. In contrast, swan grazing had a dramatic negative effect on P. perfoliatus that persisted throughout the summer of 2001, with close to no plants in the unprotected plots and high densities in the protected plots. Our results demonstrate that herbivorous waterbirds may play a crucial role in the distribution and prevalence of specific plant species. Furthermore, since their grazing benefitted their preferred food source, the interaction between swans and P. pectinatus may be classified as ecologically mutualistic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of aquatic macrophytes in stimulating biodiversity and maintaining clear waters is currently undisputed. The management of (eutrophic) shallow waters is therefore often directed at (re-)establishing macrophyte domination. In contrast, the role of water birds has long been considered of minor importance for the functioning of fresh water ecosystems. Indeed, in terms of biomass and production, water birds constitute only a minor part of these systems. However, water birds may graze heavily on water plants under certain circumstances, and the question arises whether herbivorous water birds have an important indirect effect on shallow fresh water systems. Mainly illustrated with the interaction between Bewick’s Swans and Fennel Pondweed, we present data on the role that water plants may play in the life of water birds and how water birds may impact water plants’ fitness in terms of survival, production, dispersal and competitive ability. It appears that water plants may be crucial for water birds during periods of high-energy requirements, such as migration. Despite the plants’ costs associated with water bird grazing, the interaction between water birds and water plants varies in nature from an apparent predator–prey relationship to a mutually beneficial interaction depending on the context and the perspective. For the case of the Bewick’s Swan–Fennel Pondweed interaction, regular bird grazing is sustainable and may actually favour the plant’s dispersal. Thus, Bewick’s Swans themselves may in fact play a crucial role in establishing and maintaining the Fennel Pondweed rich staging sites between the swans’ wintering and breeding grounds, which are vital for the swans’ successful migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In clonal plants, vegetative parts may outcompete seeds in the absence of disturbance, limiting the build-up of genotypic diversity through repeated seedling recruitment (RSR). Herbivory may provide disturbance and trigger establishment of strong colonizers (seeds) at the expense of strong competitors (clonal propagules). In the clonal aquatic fennel pondweed Potamogeton pectinatus, two distinct herbivore guilds may modify the dynamics of propagation. In winter, Bewick's swans may deplete patches of tubers, promoting seedling establishment in spring. In summer, seed consumption by waterfowl can reduce the density of viable seeds but grazing may also reduce tuber production and hence facilitate seedling establishment. This study is among the first to experimentally test herbivore impact on plant genotypic diversity. We assess the separate and combined effects of both herbivore guilds on genotypic diversity and structure of fennel pondweed beds. Using microsatellites, we genotyped P. pectinatus from an exclosure experiment and assessed the contribution of herbivory, dispersal and sexual reproduction to the population genetic structure. Despite the predominance of clonal propagation in P. pectinatus, we found considerable genotypic diversity. Within the experimental blocks, kinship among genets decreased with geographic distance, clearly identifying a role for RSR in the maintenance of genotypic diversity within the fennel pondweed beds. However, over a period of five years, none of the herbivory treatments affected genotypic diversity. Hence, sexual reproduction on a local scale is important in this putatively clonal plant and possibly sufficient to ensure a relatively high genotypic diversity even in the absence of herbivores. Although we cannot preclude a role of herbivory in shaping genotypic diversity of a clonal plant, after five years of exclusion of the two investigated herbivore guilds no measurable effect on genotypic diversity was detected. © 2014 The Authors.